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Abstract--The frequency response of a mass transfer probe is investigated by numerical methods in view 
of the nonlinear interaction of wall shear with the concentration boundary layer at the electrochemical 
probe. When the fluctuating component of shear is strong, the high order harmonics in the transient mass 
transfer coetiicient is not negligible. This casts doubt on the accuracy of power spectrum data of wall shear 
stress in high frequency range. Besides, the longitudinal diffusion term plays a noticeable role when the 
dimensionless length of the electrode is small and the frequency is high. Attention should be paid to the 

very poor frequency response of a double probe as it is used for the wall shear oscillating around zero. 

1. INTRODUCTION 

The problem of frequency response of a heat or mass 
transfer probe has been the subject of  numerous stud- 
ies in the past. Among those investigations both 
numerical analysis of simplified equations as well as 
experimental measurements have been reported as by 
For tuna  and Hanrat ty  [1], Mao and Hanrat ty [2] and 
Ambari  et al. [3]. 

As for theoretical analysis, the full two-dimensional 
(2D) convective diffusion equation is simplified in a 
typical approach using linearization, first by omitting 
the longitudinal diffusion and limiting the domain of 
solution to the length of the probe so that diffusion 
from the regions ~apstream and downstream of the 
probe is not  accounted for, and then neglecting all 
the harmonics in tlhe fluctuation of the mass transfer 
coefficient above the first. Those simplifying assump- 
tions limit the range of application of results. Mao and 
Hanrat ty [4] recenlly extended the solution domain to 
include the region upstream and downstream of the 
electrode in an a~Ltempt to invert the mass probe 
output, but  still ignored the longitudinal diffusion 
term. It is desired to investigate the validity of those 
approximations, and in particular the importance of 
higher order harmonics to the measurement of wall 
shear stress. 

In this study, direct numerical solution of the full 
convective diffusion equation in an extended domain 
is compared with the simplified quasi-steady state 
analysis to shed light on the validity of the above 
mentioned simplifications. The at tenuation and phase 
lag of the higher harmonics in the response of a mass 
transfer probe is examined. In addition, the numerical 
method was used 1:o study a double probe for oscil- 
lating wall shear stress to illustrate the due caution 
in dealing with the measurement of higher harmonic 
components.  Numerical simulation of the frequency 
response of a transfer probe is recommended as an 
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indispensable step in designing a probe before con- 
ducting experiments. 

2. NUMERICAL SIMULATION OF A MASS 
TRANSFER PROBE 

The convective diffusion equation models the trans- 
fer of heat and/or  mass from the surface of the probe. 
The mass transfer probe for measurement of wall 
shear stress and turbulence is usually very small in 
size, typically L = 0.05 to 0.1 mm in the flow direction, 
made of nickel or plat inum foil and imbedded flush in 
the wall. If a double probe is to be used (Fig. 1), 
another thin foil of  the same size is imbedded next to 
the first foil with a much thinner electrical insulation 
layer separating two electrodes. The lateral dimension 
of the electrode is large enough to allow the flow to 
be viewed as 2D and parallel with a constant  velocity 
gradient in the flow direction. The general governing 
equation of mass transfer is 

D/a c/- 

Since those systems chosen for the wall shear stress 
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Fig. 1. Sketch of an electrochemical probe. 
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NOMENCLATURE 

factor of attenuation of first harmonic 
of output signal for wall velocity gradient 
dimensionless concentration 
bulk concentration [mol m-  3] 
diffusivity for mass transfer [rn 2 s -a] 
frequency Is -a] 
dimensionless frequency defined by 
equation (19) 
mass transfer coefficient [mol m -2 s -a] 
electrode length in flow direction [m] 
dimensionless electrode length defined 
by equation (16) 
harmonic order 
magnitude ratio of first harmonic to 
the time average 
velocity gradient at solid wall [s- 1] 
time [s] 
velocity component in x-direction 
[m s -a] 
velocity component in y-direction 
[ms 1] 

X 

Y 
y* 

longitudinal coordinate [m] 
transverse coordinate [m] 
dimensionless distance in transverse 
direction. 

Greek symbols 
q~ phase lag [degree] 
~b ratio of magnitude response defined by 

equation (20) 
~o angular frequency [s-'] 
co + dimensionless angular frequency 

defined by equation (9) 
o9" dimensionless angular frequency 

defined by equation (15). 

Subscripts 
i index of harmonic order 
w wall. 

measurement are of high Schmidt number, the con- 
centration boundary layer is very thin and the velocity 
within the boundary layer can be approximated by 
u = Sy, from which it follows that v ac y2 for incom- 
pressible flow. However, the range ofy  is restricted by 
the very small boundary layer thickness and it is read- 
ily shown by order of magnitude arguments that the 
term v(SC/~y) is negligible. Thus, the analysis starts 
from 

8~7 + SY~x \ 8xz + ay2 ], (1) 

There exists some misunderstanding on the nature 
of equation (1). When the electrochemical probe is 
used in investigating the turbulent nature of fluid flow, 
it is a popular practice to use 

f S D 2 \  1/3 
= 0.807(7-  ) (2) 

which is the solution of the simplified steady state 
version of equation (1) : 

c~Co ~ O z Co 
S o y ~ -  x = / )  8Y 2 (3) 

without longitudinal diffusion term and subject to 
constant wall shear [5] to convert the probe output to 
fluctuating wall shear stress, S(t). Power spectrum of 

wall shear stress up to 100 Hz is often reported in 
the literature (for example, Souhar and Cognet [6], 
Kashinsky [7]). But the accuracy of data at such high 
frequency is questionable. In fact, the interaction of 
concentration field with velocity gradient represented 
by the term Sy(OC/Sx) induces serious limitation on 
application of equation (2) and generates an infinite 
series of high order harmonics in the probe output. 

It can be shown that, due to this nonlinearity of 
equation (1), higher harmonics will result even when 
S(t) consists of a nonzero average and a simple har- 
monic component only. Suppose the velocity gradient 
S(t) and the concentration C(x,y, t) take the forms of 

S(t) = So + ~ S. exp (inwt) (4) 
n = l  

C(x, y, t) -= Co (x, y) + ~ C, (x, y) exp (imot) (5) 
n = l  

then the average component C0(x, y) is governed by 

aCo D(t~2Co 02Co~ 
S°Y~-x - \ - ~ - x  2 + ayZ ] (6) 

which is the steady state version of the convective 
diffusion equation under the condition of parallel flow 
with a constant velocity gradient So. All the higher 
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order harmonic components are involved with lower 
order ones of C(x, y, t) and S(t) : 

OCI /02 C1 02 C1 
iogC,(x,y)+SoY~x = Dt~-x~ + 0y2 ) 

OCo - y S ,  ~ (7a) 

OC 2 [,02 C2 02 C2 x 
2io~C:(x,y)+ SoY~x = o~Tff-x; + Oy: ~ ) 

OC, OCo\ 
- y  S1--~x + S 2 ~ x  ) (7b) 

aC. f02C. 02C.~ 
in°JC,(x,y)+Soy~x = Dt~f-x2 + ~y2 / 

& OC._k 
- Y  2, S k - - .  (7C) 

k =  1 0X 

The boundary .conditions for the harmonic 
C I , . . . ,  C , , . . .  are easy to define. In principle, we can 
solve for all C, successively. The mass transfer 
coefficient is then 

1 gL OC(x,y,t) l 
k(t) = Z J  ° D ~.; w d x = k ° +  l l = l  ~ k, exp(inogt) 

(8) 

where the component k, is dependent on first n +  1 
components of S(t) : So, St . . . . .  and Sn. The subscript 
w in equation (8) indicates evaluating the derivatives 
at the electrode surface, y = 0. 

In particular, even if there exists only one harmonic 
$1 in the input S(t), there results an infinite series of 
harmonics both in C(x,y, t) and in the output mass 
transfer coefficient k(t). Fortuna and Hanratty [1], 
Mao and Hanratty [2] and Ambari et al. [3] simplified 
the problem by setting all the higher harmonics of 
C(x,y,t)  to be zero and took equation (7a) as the 
dynamic system simulating the mass transfer process. 
When the ratio of S,/So becomes large, this assump- 
tion is expected to be in error. 

To analytically solve the infinite set of equation 
(7) is impractical. Under the linearization convention, 
Mao and Hanratty [2] have shown that equation (7a) 
depends on a single parameter, the dimensionless fre- 
quency 

[ L 2 "X,/3 

~+ = 2 . f t~ -d~  ) . (9) 

However, when S ( t ) =  So+S, exp(iegt) and the 
higher harmonics in C are not to be neglected, equa- 
tion (1) may be put in the dimensionless form, 

OC OC ( o )  ,OC 02C O:C 
- -  Y Ox* 0x .2 + 0t* +Y*~x* + R e x p  i~ot* - - -  

where the dimensionless variables are 

Oy .2 

(10) 

t* = So t (11) 

x* = xx/(So/D ) (12) 

y* = yxl(So/D). (13) 

Thus it is seen that the solution is controlled by the 
following three parameters : 

R = SI/So (14) 

09* = co~So (15) 

L* = Lx/(So/D ) (16) 

the last one resulting from the boundary condition. 
It is possible to solve the full convective diffusion 

equation (10) by a direct numerical method without 
resorting to simplifying assumptions. For  this 
purpose, a rectangular domain of flow field is chosen 
instead of a semi-infinite plane. One boundary is the 
solid wall and the probe surface, and the other three 
are located far enough from the mass transfer probe, 
so that the boundary condition there, C = 1, can be 
used, where the dimensionless concentration C is nor- 
malized by CB0. The electrode length used for simu- 
lation ranges from 0.07 to 0.24 mm and is centered in 
a 0.03 m long wall. The computational domain 
extends 2 mm from the wall in the y direction. For  
a typical ferri/ferrocyanide system, the thickness of 
concentration boundary layer is about 0.01 mm only. 

Numerical solution of the convective diffusion 
equation in a rectangular domain is rather easy with 
the control volume formulation discussed in a book 
by Patankar [8]. UPDS (Upstream Power-law Diff- 
erencing Scheme) was chosen to discretize the differ- 
ential equation. More meshes were distributed along 
the electrode and near the wall, with widely spaced 
grid lines in the areas far from the probe. The proper 
mesh size was determined by trial computations of 
steady state convective diffusion with gradually 
decreasing cell size, until little change occurred in the 
resulting mass transfer coefficients. The time interval 
was chosen small enough so that no additional change 
of the concentration field occurs as time interval is 
further reduced. A typical mesh net consisted of 40- 
50 cells in flow direction and 25 across the flow. Time 
step was usually about one thousandth of the charac- 
teristic time scale : the period of oscillation or other 
appropriate time scale. Computation was mostly done 
on the dimensional formulation. The velocity gradient 
in the x direction was assumed constant for each time 
instant. 

To check the ability of the numerical scheme, steady 
state mass transfer under constant wall shear was 
solved and the results were compared with the ana- 
lytical quasi-steady solution, equation (2). Figure 2 
shows that the results of  k(t) from the numerical cal- 
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Fig. 2. Comparison of direct numerical simulation with the 
quasi-steady state solution, equation (2). Longitudinal 
diffusion term becomes significant when L* is less than 30. 
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Fig. 3. Phase lag of the first harmonic of average k(t) behind 
the fluctuation of S(t). 

culation for cases with different values of velocity 
gradient agree very well with equation (2), although 
there is a small difference. More results were presented 
by Mao [9] to reveal the relation of the difference to 
the values of L*. When L * >  30, the difference 
between the numerical simulation and equation (2) is 
negligible, but the longitudinal diffusion omitted in 
equation (3) creates pronounced deviation from the 
numerical simulation of the full mass transfer equa- 
tion when L* is small. However, small size electrodes 
are sometime preferred in order to improve the fre- 
quency response, and in this case caution is advised 
for adopting simple and analytical equation (2). 
Moreover, the transient process of switching on a 
mass probe was also simulated and the decay of the 
mass transfer coefficient from the present numerical 
simulation was in close agreement with the exper- 
imental measurements of transient k(t) [9]. 

3. HIGH ORDER HARMONICS IN THE 
RESPONSE TO SHEAR WITH A SIMPLE 

HARMONIC 

Numerical computations were carried out for the 
case of simple harmonic of small amplitude (R = 0.1) 
superimposed on a constant time-average wall shear 
as depicted by 

S = So (1 + R sin (2nft)). (17) 

The attenuation and phase lag of the first harmonic 
of the mass transfer coefficient k(t) were evaluated by 
using Fourier analysis for a series of cases. In the limit 
as f - ,  0, the pseudo-steady state assumption becomes 
precise and the fluctuating component kl of k(t) can 
be derived from equation (2). The amplitude of first 
harmonic is dependent on the strength of the har- 
monic component in S : 

kl 
1 + k00 = (1JI-R) 1/3 (18) 

and the phase lag for the first harmonic will approach 
zero. But as f increases, the phase lag of k(t) behind 
S(t) and attenuation of the fluctuation in k(t) become 
evident. The phase lag, ~b, of the average mass transfer 
coefficient from the numerical simulation is presented 

in Fig. 3, where the dimensionless frequency is defined 
a s  

[ \ L  2 i/3 
.9 )  

The asymptotic value is n/2 for the average phase lag. 
Figure 4 presents the results of amplitude ratio from 
numerical simulations, showing that the asymptotic 
slope of the curve for the amplitude ratio vs f+ 
approaches - 1.0. Mizushina et al. [10] found exper- 
imentally that the average Sherwood number under 
constant wall concentration displayed that the phase 
lag of first harmonic approached hi2 and k l/ko became 
-0 .95  a s fwas  high. From the results of linearization 
it is noted that for the space-averaged k(t) the asymp- 
totic values were n/2 and about -0 .91 ,  respectively 
[2]. Present results agree well with the values in the 
above-mentioned literature. 

Those average values from the numerical simu- 
lations coincide well with the phase lag and correction 
factor of magnitude 1/A 2 by Mao and Hanratty [2], 
where A is the ratio of magnitude of the first harmonic 
in k(t) over that by pseudo-steady state assumption, 
equation (18). They are presented in Figs. 5 and 6 in 
accordance with the format of Mao and Hanratty [2] 
for easier comparison. For  the case of R = 0.1, our 
numerical simulation of the full convective diffusion 
equation (1) are in good agreement with the solid line 
from analysis of linearization by Mao and Hanratty 
[2]. 
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For a velocity gradient fluctuating sinusoidally with 
larger R, the resulting mass transfer coefficient k(t) 
behaves quite differently. The probe response is dis- 
torted and biased from a sine wave; the phase lag 
becomes more obvious and unsymmetrical: the time 
delay is larger when S is at the minimum than that at 
the maximum instantaneous S, indicating the exis- 
tence of higher order harmonics. More information 
about the influence of the fluctuation ratio R and the 
frequencyfon the phase lag and the magnitude of the 
first and other higher harmonics is shown in Tables 
1-4. It is noticed that the behavior of the first har- 
monic of k approaches the theoretical relation for 
steady state mass transfer, equation (18), only at low 
frequency and low fluctuation ratio. In Table 1, the 
ratio of magnitude response, 

Table 1. Ratio of magnitude response ¢ (So = 2000 s -], 
D = 5x ][0-1°m2s -I, L = 0.1 mm) 

f[Hz] R = 0.1 R = 0.2 R = 0.6 R = 1.5 

1 1.041 1.079 1.284 3.197 
10 0.846 1.037 1.206 3.183 

k~/ko 
- (20) 

(1+R)1/3-1  

is tabulated. If k behaves according to k oc S ]/3, then 
~, is unity. It is noticed that frequencyf and velocity 
gradient fluctuation R have opposite influence on ~O. 
Higher f suppresses the magnitude of first harmonic 
kl, but high R causes an increase. These effects result 
from nonlinearity between C and S in equation (1) as 
discussed above. When the frequency is increased, 
every member in the family of harmonics is suppressed 
to some extent, the higher order harmonics being sup- 
pressed more seriously (Table 3). Table 3 also shows 
that the higher the frequency, the smaller is the asym- 
metry ofk(t) expressed by percentage difference of the 
time delay for the maximum and minimum of S due 
to suppressed higher harmonics. As mentioned earlier, 
higher frequency produces larger phase delay which 
approaches the asymptotic value 90 ° (Table 2). R is 
closely related to the deviation from approximation 
by linearization. When R is increased, the 1/3 power 
law is no longer valid, and larger R induces larger 
magnitude of all harmonic components for all fre- 
quencies tested (Table 4). Since large R will create 
larger amplitude of higher harmonics than the first, 
the asymmetry of k(t) will be more serious (Table 4). 
Table 2 also shows that as R increases, the phase delay 
of the first harmonic increases too. 

The attenuation and phase lag of the first harmonic 
in cases of higher value of R are also presented in Figs. 
5 and 6 in comparison with Mao and Hanratty [2]. 
For the case of a single harmonic component in S(t) 
and when R is small, numerical results show that the 
system behaves predictably in accordance with the 
linear relationship presented by Mao and Hanratty 
[2], as shown in Figs. 5 and 6. However, for higher 
value of R (greater than 0.2) and over the entire fre- 
quency range, a significant difference exists between 
these two approaches. Tables 1-4 show that no simple 
rules can be resorted to for prediction. It is suggested 
that in a case of need, the numerical simulation as 
presented here is necessary for evaluation of the fre- 
quency response of a heat or mass probe under con- 
sideration. 

The effect of the longitudinal diffusion on the fre- 
quency response of the probe under the fluctuating 
wall velocity gradient was also explored. The simu- 
lation suggests that the influence is significant when 
the probe has small L*. In such a case, the probe 
calibration should be done more carefully. 

4. F L U C T U A T I N G  SHEAR STRESS W I T H  
MULTIPLE H A R M O N I C S  

The response of the probe was computed for an 
input S(t) from the measurements of a falling liquid 
film at a Reynolds number of 310 (cited from [11]). A 
0.118 s interval of S(t) was chosen as one period (8.47 
Hz) and decomposed into a Fourier series. The first 
13 pairs of Fourier coefficients were used to recon- 
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Table 2. Phase lag of  the first harmonic of k(t) behind S(t) (So = 2000 s -1, D = 5 x 10 10 m 2 
s -1, L = 0.1 mm) 

f [Hz]  R = 0.1 R = 0.2 R = 0.6 R = 1.5 

0.25 0.447 (4.97 ms)* 1.91 (21.2 ms) 
1 1.79 (4.96 ms) 1.80 (5.00 ms) 1.98 (5.51 ms) 6.39 (17.8 ms) 

10 17.5 (4.87 ms) 18.7 (5.20 ms) 29.45 (8.18 ms) 
50 62.1 (3.45 ms) 66.14 (3.67 ms) 

*Figures in brackets are the phase lag in ms. 

Table 3. Dependence of  the magnitude of harmonics in k(t) o n f  (So = 2000 s 1, R = 0.2, 
D = 5 x l 0  I° m2 s-I ,  L = 0.1 mm) 

Relative amplitude kl/ko [%] 
f [Hz]  1 st harmonic 2nd harmonic 3rd harmonic g, 

1 6.76 0.225 0.013 0.13 
10 6.50 0.190 0.010 0.10 
50 3.43 0.014 0.0004 0.006 

Table 4. Dependence of  the magni tude of  harmonics in k(t) on R (So = 2000 s - l , f=  1 Hz, D = 5 x 10 10 m 2 s - l ,  
L = 0.1 mm) 

Relative amplitude ki/ko [%] 
Asymmetry  of  

R 1st harmonic 2nd harmonic 3rd harmonic phase lag [%] 

0.1 3.36 0.056 0.002 8.3 1.041 
0.2 6.76 0.225 0.013 13 1.079 
0.6 21.80 2.38 0.44 36 1.284 
1.5 46.27 5.91 12.98 55.2 3.197 

struct the input velocity gradient time trace. Thus, 
harmonics above 102 Hz were neglected. Figure 7 
shows the relative strength of each harmonic Si with 
respect to the average So. That signal with f = 8.47 
Hz was fed into the computer program, and the output 
k(t) was converted to S(t) with equation (2) and then 
decomposed into harmonics. The ratio of ki/k o over  

So for the output S(t) is plotted in Fig. 8. As the order 
of harmonic increases, the probe gives decreasing 
response for that harmonic, namely, a smaller value 
for ratio of ki/ko over SdSo (the middle broken line in 
Fig.  8). 

T h e  s a m e  S(t) t race  was  ar t i f icial ly s t r e t c h e d  o r  

c o m p r e s s e d  in the  t ime  d o m a i n  so  as to ge t  i n p u t  

i0 o 
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Order  o f  ha rmonic  

Fig. 7. Relative strength o f  harmonics in the input S(t). 

signals with the same relative spectrum Si/So but 
different basic frequency. They were used as input to 
determine the effect of basic frequency. It is observed 
that the lower frequencyf = 2.12 Hz makes the output 
follow the velocity gradient better, while the increased 
frequency f = 21.2 Hz makes output unable to follow 
input S(t) closely and the enhanced time delay results 
in more erroneous elapsing-time between the mini- 
mum and the maximum points of the output S(t). 
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Fig. 8. Dependence of  the at tenuation of  higher harmonics 
on the order of  harmonics.  
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Figure 8 also shows that higher order harmonics in 
k(t) for f =  21.2 Hz are damped more than the first 
few harmonics. For  lower order harmonics, the ratio 
ki/ko over S~/So is around 1/3 as the linearization 
theory indicated for low level of Si, but it decays as the 
harmonic order inc, reases, quite obviously for cases of 
f = 8.47 Hz and f =  21.2 Hz. For  harmonics of the 
same order, the higher the basic frequency, the more 
serious damping results due to the high frequency for 
the individual component. It is noticed that a peak 
occurs at the 8th harmonic in Fig. 8 for f =  2.12 Hz, 
but the input S(t) has no such spike at 8th order. That 
is additional evidence that the harmonic components 
are not independent of each other and a harmonic of 
high order in k(t) is related to all the lower order 
harmonics in the input S(t). 

For the case of multiple harmonics, it can be con- 
cluded that when the input S(t) has a broad spectrum 
in harmonic strength, the mass transfer probe pro- 
duces an output k(t) or S(t) with a narrower spectral 
band with the higher order harmonics suppressed and 
distorted more seriously. When the dominant fre- 
quency in S(t) is low, the output will conserve more 
original features of the input S(t) and contain more 
information on high frequency components. 
Although it is not feasible to evaluate the probe 
behavior analytically, it is possible to use the numeri- 
cal procedure to analyze the validity of using a mass 
transfer probe for measurements, given the infor- 
mation about the spectrum of S(t) signal. 

5. TItE DOUBLE PROBE 

Another case of interest is the simple oscillation of 
a wall velocity gradient at a double probe, which is a 
special situation that the wall shear stress changes its 
sign. A double probe is shown schematically in Fig. 
1. If electrode B is downstream, then it resides in the 
wake of  the concentration boundary layer created by 
electrode A and will see a thicker boundary layer as 
sketched in Fig. 1. Thus, if electrodes A and B have 
the same area of exposure, the mass transfer coefficient 
k(t) of electrode F| would be smaller than that of 
electrode A, indic~Lting the direction of the flow is 
from A to B. When there are flow reversals at the wall, 
one can detect those by comparing the magnitude of 
the signals from a ,double probe. Under steady state 
conditions the direction of flow can be easily deter- 
mined. 

But oscillation of S(t) around zero, in particular of 
high frequency, alters drastically the structure of the 
concentration boundary layer at a double probe. 
Numerical simulations were run for the input, 
S(t) --- 1000sin (2nft),  where fwas  chosen to be 1, 5 
and 25 Hz and D = 5x  10 -l° m 2 s - l .  Figure 9(a) 
shows the concentration boundary layer at the 
moment that the velocity gradient is at its maximum 
value of S for three frequencies. Figure 9(a) shows 
that the downstreara concentration boundary layer is 
thicker than the upstream one. For  this probe L* is 

small (L* = 14.1) and the time constant of the probe 
is much less than the period of oscillation, so that the 
probe has enough time to follow the change of S(t). 
With f increased to 5 Hz, upstream of the double 
probe there appears a large area with concentration 
significantly less than the bulk flow (area '~' in Fig. 
9(b)). However, the distorted boundary layer is still 
thicker at electrodes B than A and the direction can 
be determined. But the upstream concentration 
boundary layer has changed, and the static calibration 
and the single probe solution to convective diffusion 
equation become invalid. Further increasing f to 25 
Hz brings about more change in the structure of the 
concentration boundary layer : it becomes more sym- 
metric and thicker, thus resulting in a much smaller 
k(t) (Fig. 9(c)). In this case, the period of wall shear 
is comparable to the time constant of the probe, and 
the concentration field at the probe has no sufficient 
time to respond to the fast oscillating velocity field 
and greater phase lag would result. Such systems are 
not suitable to determine either the direction or the 
magnitude of wall shear. 

When measurement is made on the reversal of shear 
stress at the wall, it should be recognized that the 
probe displays greater phase lag for S(t) oscillating 
around zero than when time-average of velocity gradi- 
ent So is much larger than the fluctuation. Figures 10 
and 11 present the plot of attenuation defined as the 
ratio of kmax over steady state k against f ÷ defined in 
equation (19) and the phase lag in degrees against 
f ÷  where the data from different combinations of 
physical parameters fall on a unique correlation. 
Figure 12 shows the time trace of input 
S(t) = 1000 sin (2n ft) and resulting output S(t) cal- 
culated from the difference of instant mass transfer 
coefficients kA(t) and kB(t), 

fSD2~ 1/3 
kA = ) 

where the constant a depends on the geometry of 
the double probe and the thickness of the separating 
insulation. When it approaches zero, a can be evalu- 
ated analytically to be 0.33 under steady state con- 
dition [6]. It is assumed that the equal voltage output 
from both A and B defines the moment of  zero velocity 
gradient. Figure 12 shows that as the frequency 
becomes higher, severe attenuation of the maximum 
amplitude of k(t) and rather large delay of the time of 
reversal picked up by a double probe with respect to 
the instant of zero velocity gradient. Besides, the shape 
of the output trace is quite distorted, suggesting seri- 
ous portion of higher harmonics generated. Only at 
very low frequency is reasonable accuracy possible for 
detection of the flow reversal. Comparing the results 
in Figs. 10 and 11 with those in Figs. 5 and 6, it is easy 
to be convinced that the oscillation of shear stress 
around zero is the most difficult case for a mass trans- 
fer probe to respond well. 

It is evident that the use of the double probe to 
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Fig. 9. Contour maps of the concentration boundary layer at a double probe when the fluctuating wall 
shear is at the maximum. The interval between two contour lines is 0.05. 

determine direct ion of  flow must  be approached  with 
caution.  At  high frequencies it seems quite useless 
because of  the large phase  shift and  serious a t tenu-  
a t ion  of  ampli tude.  A t  lower frequencies its suitabili ty 
depends on the ampl i tude  of  velocity gradient  fluc- 
t ua t ion :  smaller Smax means  larger t ime cons tan t  for 
the p robe  and  lower frequency with which it can  be 
used. In general, Figs. 10 and  11 supply a way to judge 

the suitability. I f  S(t) is known  or can  be est imated,  
numerical  s imulat ion can  be used to judge the use- 
fulness of  a double  p robe  for the purpose.  

6 .  C O N C L U S I O N S  

Numerica l  s imulat ion is shown to be a useful tool 
in designing a mass t ransfer  p robe  and  analyzing the 
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Fig. 10. Dependence of the attenuation on the dimensionless 
frequency. 
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Fig. 12. Comparison of the input and output S(t) by equation 
(2) in cases of various basic frequencies. 

data from the probe. Results from the simulation con- 
firms that the numerical procedure are suitable for the 
case of  steady state mass transfer or a single harmonic 
fluctuation with a small fluctuation ratio, as presented 
in the literature. The numerical simulation can be used 
to analyze heat or  mass transfer probes working in 
more complicated situations when analytical or lin- 
earization approaches are difficult to handle. 

As pointed out above, the conventional lin- 
earization of  full convective diffusion equation (1), 
as For tuna  and Hanrat ty  [1] did by assuming one 
harmonic component  in modulat ing velocity gradient 
S(t) and resulting k(t),  is a crude idealization of  physi- 
cal phenomena occurring at a mass transfer probe. 
There is no superposition principle ofk(t)  with respect 
to S(t), and fluctuation of  wall shear stress generates 
multiple harmonics in k(t), even when S(t) has only a 
simple harmonic. The harmonics in output  k(t) do not 
correspond uniquely to the same order harmonic in 
the input S(t). The presence of  strong high order har- 
monics in some cases makes the theory ofl inearization 
not suitable for fluctuating S(t) in general. 

In case of  only one harmonic in S(t) and the fluc- 
tuation ratio R is small, the numerical simulation gives 
the results in close agreement with [1] and others. 
Figures 5 and 6 are the comparison of  numerical simu- 
lations in this study with Mao and Hanrat ty  [2]. 
Despite the fluctuat:ion of  S(t) up to 20%, the numeri- 
cal results agree with the theory oflinearization. When 
only one harmonic exists in the modulat ing flow, as 
typically in a laminar case, the method of  correction 
of  measurement from a mass transfer probe as sug- 
gested by For tuna  and Hanrat ty  [1], Mao  and Han- 
ratty [2] is applicable. When R is larger than 0.2, 
numerical approach shows significant difference from 
the approximation by linearization. In this case, direct 
numerical simulation is suggested to evaluate any 
specific experimental setup. 

Few real processes deal with only one harmonic. 
Turbulence in flour presents a significant level of  
higher harmonic components.  The correction for 

measurement of  shear stress reversal from a double 
probe is not yet resolved analytically. The mass trans- 
fer probe averages the information over the flow field 
and over a certain period of  time of  which the con- 
centration field still keeps partial memory into a single 
time trace of  k(t). The exact recovery of  the original 
S(t) from k(t) is almost impossible mathematically. 
Mao  and Hanrat ty  [4] have proposed a method to 
inverse the mass probe output. Since the longitudinal 
diffusion term is omitted, numerical inaccuracy will 
inevitably occur in the inversion, in particular when a 
small size electrode is used. 

In summary, Figs. 5, 6, 10 and 11 set the upper limit 
for L for reasonable frequency response. There is no 
lower limit for L if an experimental calibration of  S 
vs k is to be used. When equation (2) is used for 
converting k(t) to S(t), the lower limit for L can be 
determined by checking the difference between equa- 
tion (2) and numerical simulation based on equation 
(1) with the longitudinal diffusion accounted for. 
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